Loading
0

城市轨道交通工程BIM应用指南第三部分

本文目录
[隐藏]

城市轨道交通工程BIM应用指南第二部分

5可行性研究阶段BIM应用

5.1可行性研究阶段可应用BIM对设计运营功能、工程规模、工程投资等进行分析,验证工程项目可行性、落实外部条件、稳定线路站位、优化设计方案,保证设计方案的合理性、适用性和经济性。

5.2 可行性研究阶段以方案设计模型为基础,利用GIS、大数据、云计算等技术对设计方案进行规划符合性分析、服务人口分析、景观效果分析、噪音影响分析、征地拆迁分析及地质适宜性分析等,选择最优设计方案,并以设计方案为依据进行相关区域的规划控制管理。

5.3可行性研究阶段BIM应用主要包括以下内容:

  • 1 规划符合性分析:利用BIM数据集成与管理平台集成城市轨道交通线/网方案设计模型,分析城市轨道交通工程与周边环境建(构)筑物的位置关系、交通接驳关系、车站换乘关系、商业一体化开发关系等,实现城市轨道交通工程设计与城市规划协同;
  • 2服务人口分析:利用BIM数据集成与管理平台集成城市轨道交通线/网方案设计模型,并通过接入城市人口分布信息库获取人口的年龄、性别、职业等信息,快速统计车站周边指定范围内建筑物的人口信息,用于客流量和服务人口的预测分析;
  • 3 景观效果分析:利用BIM数据集成与管理平台集成城市轨道交通线/网方案设计模型,模拟城市轨道交通线路及周边环境,分析城市轨道交通建(构)筑物、设施与周边环境结合的景观效果;
  • 4 噪音影响分析:利用BIM数据集成与管理平台集成城市轨道交通线/网方案设计模型和噪音影响分析软件输出的数据,在三维场景中展示噪音影响范围,统计分析城市轨道交通运行噪音影响区域内的建筑(数量、面积、产权单位、用途等)、人员(数量、职业等)等信息;
  • 5 征地拆迁分析:在场地模型中集成城市用地规划、建(构)筑物产权单位、建设年代、建筑面积、城市人口分布等信息,利用BIM数据集成与管理平台分析设计方案需要拆迁的建(构)筑物的数量、面积、产权单位和拆迁成本等;
  • 6 地质适宜性分析:利用BIM数据集成与管理平台集成城市轨道交通线/网方案设计模型,分析设计方案中线路穿越的地层、地下水和不良地质情况,提高方案分析和调整的效率;
  • 7 规划控制管理:利用BIM数据集成与管理平台集成城市轨道交通线/网方案设计模型和城市控/详规信息,建立包含完整环境模型信息的数字城区,进行设计方案审查、规划控制,实现整个规划的动态管理;
  • 8投资估算分析、施工安全风险分析、设计方案可视化、控制因素分析等其他应用。

6初步设计阶段BIM应用

6.1初步设计阶段可应用BIM对设计方案或重大技术问题的解决方案进行综合分析,协调设计接口、稳定主要外部条件,论证技术上的适用性、可靠性和经济上的合理性。

6.2初步设计阶段宜利用初步设计模型对建筑设计方案、结构施工方案、专项风险工程、交通影响范围和疏解方案、管线影响范围和迁改方案进行可视化沟通、交流、讨论和决策。

6.3初步设计阶段BIM应用主要包括下列内容:

  • 1 设计方案可视化:利用初步设计模型展现设计方案并进行方案分析,充分展示城市轨道交通与周边环境的空间关系、出入口位置等关键因素,进行方案沟通交流;
  • 2 控制因素分析:利用初步设计模型进行轨道交通线路与周边环境的协调性检查及环境影响分析,形成控制因素报告及模拟视频,直观展示城市轨道交通工程穿越的风险工程、涉及的一体化开发工程等控制因素,分析其对城市轨道交通工程的制约程度;
  • 3 换乘方案模拟:利用初步设计模型模拟客流、展示换乘方案等,直观、清晰地模拟分析车站换乘方案,形成换乘方案报告及模拟视频,实现换乘方案的高效决策,为方案讨论、宣传、公示等活动提供支撑;
  • 4 设计方案比选:建立比选设计方案模型,对各方案的可行性、功能性、美观性等方面进行分析,形成相应的方案比选报告,选择最优设计方案;
  • 5 施工工法模拟:利用初步设计模型模拟施工工法并形成模拟视频,清晰表达设计方案的施工工法、辅助措施等信息,辅助施工工法的论证和比选;
  • 6 交通疏解、管线改迁模拟:利用初步设计模型分阶段模拟并优化管线迁改和道路疏解方案,利用模拟视频清晰表达交通疏解、管线改迁方案随进度计划变化的状况,反映各施工阶段存在的重点难点,检查并优化方案,辅助工程筹划;
  • 7 工程量统计、管线碰撞检查、三维管线综合、限界优化设计、设计进度、质量管理等其他应用。

7施工图设计阶段BIM应用

7.1施工图设计阶段可应用BIM对设计方案进行综合模拟及检查,优化方案中的技术措施、工艺做法、用料等,在初步设计的基础上辅助编制可供施工和安装阶段使用的设计文件。

7.2施工图设计阶段宜利用模型开展设计进度和质量管理、限界优化设计、管线碰撞检查、三维管线综合、预留预埋检查及工程量统计等方面的应用,提高设计质量。

7.3施工图设计阶段BIM应用主要包括下列内容:

  • 1 设计进度和质量管理:利用BIM数据集成与管理平台实现对设计图纸和BIM交付成果的集中存储与管理,保证交付数据的及时性与一致性,在BIM数据集成与管理平台中进行设计任务分配及模型管理,确保信息沟通及时准确、工作开展顺畅有序,提高设计效率和质量;
  • 2 限界优化设计:利用施工图设计模型,开展限界与土建、设备的碰撞检查,辅助车辆限界、设备限界和建筑限界设计,提高设计质量;
  • 3 管线碰撞检查:利用施工图设计模型检测专业之间或专业内部的设施设备空间布置是否碰撞、是否满足特定间距要求,形成碰撞分析报告,辅助优化设计;
  • 4 三维管线综合:根据碰撞分析报告和管线综合技术要求调整管线布置,优化设备及管线空间排布,使其满足运输、安装、运行及维护检修的空间使用要求,输出车站各层综合管线、车站关键节点部位等的三维模型视图,辅助设计交底;
  • 5 预留预埋检查:根据管线综合后的施工图设计模型梳理墙、板以及二次结构的孔洞预留和预埋件布置,输出预留孔洞图纸(应包含形状、尺寸、位置等信息)和预埋件布置图纸(应包含类型、规格、位置等信息),实现预留孔洞和预埋件的提前检查,规避工期延误风险和质量隐患;
  • 6 工程量统计:利用施工图设计模型输出各清单子目工程量与项目特征信息,根据工程量清单中的分部分项优化完善模型数据,保证清单项与构件一一对应,辅助编制、校核工程量清单,提高各阶段工程造价的效率与准确性;
  • 7 建筑能耗分析、日照分析、结构计算分析、岩土工程分析、大型设备运输路径检查等其他应用。

8施工阶段BIM应用

8.1 施工准备

  • 施工准备阶段可应用BIM对工程施工方案开展深化设计及虚拟建造,深入理解设计意图、分析工程重难点,全面优化施工组织设计。
  • 施工准备阶段应结合施工工艺和现场情况,利用模型开展机电深化设计、装修深化设计、土建深化设计、大型设备运输路径检查、关键复杂节点工序模拟和工程筹划模拟等方面的应用,指导现场施工。
  • 施工准备阶段的BIM应用主要包括以下内容:
  • 机电深化设计:利用深化设计模型,根据施工需要和规范要求对各系统的设备空间布置、墙面箱柜协调、支吊架设计及荷载验算等进行深化设计,利用深化设计模型输出管线排布、综合支吊架设计、设备机房布置等的三维模型视图,指导构件加工和现场安装,保障设备安装的材料节约、布置紧凑、使用方便和设计美观;
  • 装修深化设计:利用深化设计模型,结合装修方案进行建筑和结构之间的影响分析、管线校核和标高控制,对各类设施的平衡进行检查,优化装修设计效果及空间位置关系,确保装修方案美观、合理、可行,利用深化设计模型输出建筑关键部位的三维模型视图,辅助论证装修方案、指导现场施工;
  • 土建深化设计:利用深化设计模型,获取穿墙点相关管线与桥架构件的尺寸、位置和高度等信息,截取开孔剖面,以表格形式输出包含孔洞编号、尺寸和高度等信息的孔洞清单,指导施工现场孔洞预留,利用深化设计模型在预埋件布置部位获取类型、规格、位置和高度等信息,截取包含尺寸标注的预留预埋布置图,指导施工现场预埋件布置,避免由于错、漏导致的管线拆改、封堵孔洞、重新开凿和重新埋设等,达到节约材料和工期的目的;
  • 大型设备运输路径检查:利用深化设计模型模拟风机、机柜等大型设备的运输、安装和检修方案,检查运输方案并形成问题报告,说明运输过程的碰撞点位置、碰撞对象,指导运输方案的优化,输出可实施的大型设备运输路径模拟视频,指导施工阶段的设备运输和安装;
  • 关键、复杂节点工序模拟:利用深化设计模型对施工工艺复杂、结构形式特殊、专业施工交叉密集及施工风险突出的工程关键点进行施工工序模拟,生成模拟视频,利用模型和模拟视频进行三维可视化交底,提高施工质量、减少返工;
  • 工程筹划模拟:利用深化设计模型对施工场地布置、周边环境及构筑物改迁、施工方案及施工资源配置进行动态模拟,优化施工方案,保证工程筹划的合理性;
  • 钢结构深化设计、混凝土预制构件生产、钢结构构件加工、机电产品加工等其他应用。

8.2施工实施

  • 施工实施阶段可应用BIM创建虚拟现场,利用GIS、物联网、移动互联等技术开展标准化管理、进度管理、安全风险管理、质量管理、重要部位和环节条件验收、成本管理等方面的应用,实现对工程项目的精细化管理。
  • 施工实施阶段的BIM应用主要包括下列内容:
  • 标准化管理:根据法律法规、企业标准化施工管理办法等,确定场地布置、工艺流程和质量控制等方面的标准化工作要求,创建包含临建、安全防护设施、施工机械设备、质量控制样板、质量通病等的标准化管理模型,对场地布置方案、施工工艺、施工流程、质量安全事故等进行模拟,开展施工交底、实施、管理及考核等标准化管理活动;
  • 进度管理:根据施工组织设计和进度计划对深化设计模型进行完善,在模型中关联进度信息,形成满足进度管理需要的进度管理模型,利用BIM数据集成与管理平台进行进度信息上报、分析和预警管理,实现进度管理的可视化、精细化、便捷化;
  • 质量管理:以深化设计模型为基础建立质量管理模型,根据质量验收标准和施工资料标准等确定质量验收计划,进行质量验收、质量问题处理和质量问题分析等工作,可利用移动互联、物联网等信息技术将质量管理事件录入BIM数据集成与管理平台,建立工程质量信息与模型的关联关系,实现工程质量问题追溯和统计分析,辅助质量管理决策;
  • 安全风险管理:以深化设计模型为基础,根据施工安全风险管理体系增加风险监测点模型和风险工程等信息,建立安全风险管理模型,利用BIM数据集成与管理平台建立环境模型与安全风险监测数据的关联关系,实现对施工安全风险的可视化动态管理;
  • 重要部位和环节条件验收管理:根据轨道交通建设工程重要部位和环节施工前条件验收的具体实施办法和要求,利用BIM数据集成与管理平台查询施工过程模型的重要部位和环节的验收信息,快速获得验收所需准备工作及各项工作完成情况,提高条件验收工作沟通和实施的效率;
  • 成本管理:以深化设计模型为基础,根据清单规范和消耗量定额要求创建成本管理模型,通过计算合同预算成本,结合进度定期进行三算对比、纠偏、成本核算、成本分析工作,可根据实际进度和质量验收情况,统计已完工程量信息、推送相关数据、输出报表等,辅助验工计价工作;
  • 验收管理:根据《城市轨道交通建设工程验收管理暂行办法》(建质〔2014〕42号)和其他现行国家标准、地方标准、行业标准的规定,单位工程预验收、单位工程验收、项目工程验收和竣工验收前,在施工过程模型中添加或关联验收所需工程资料,单位工程预验收、单位工程验收、项目工程验收和竣工验收时,利用模型快速查询和提取工程验收所需资料,通过对比工程实测数据来校核工程实体,提高验收工作效率;
  • 监理控制、监理管理等其他应用。

8.3竣工验收模型交付

  • 城市轨道交通工程竣工验收合格后,将各阶段验收形成的专项验收情况、设备系统联合调试数据、试运行数据等验收信息和资料附加或关联到模型中,形成竣工验收模型,分别向政府管理部门和运营单位移交。
  • 竣工验收模型及附加或关联的验收信息、资料和格式等应满足政府管理部门资料归档要求,支持线路运营维护。

内容来源住建部

转载请以链接形式标明本文地址!